在PyTorch中进行模型评估通常需要以下步骤:
- 导入所需的库和模型:
import torch import torch.nn as nn import torch.optim as optim import torchvision from torchvision import transforms, datasets
- 加载测试数据集:
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
- 加载模型:
model = YourModel() model.load_state_dict(torch.load('model.pth')) model.eval()
- 定义评估函数:
def evaluate_model(model, test_loader): correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total print('Accuracy of the model on the test set: {:.2f}%'.format(accuracy * 100))
- 调用评估函数:
evaluate_model(model, test_loader)
这样你就可以在PyTorch中对模型进行评估了。